skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Yu-Ching"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Subparsec binary supermassive black holes (BSBHs) should be common from galaxy mergers, yet direct evidence has been elusive. We present Hubble Space Telescope (HST)/WFC3IR F160W imaging for a sample of eight candidate subparsec BSBHs at redshiftsz ∼ 0.1–0.5, as well as cross-comparison with a sample of ordinary quasars with archival HST/WFC3 IR F160W images. These eight candidate subparsec BSBHs were identified from multiepoch spectroscopic surveys of quasars (including both typical quasars and those with single-peaked velocity-offset broad lines), whose broad Hβlines are significantly offset (by ≳ a few hundred kilometers per second) from the systemic redshifts. We directly test the prediction that the host galaxies of BSBHs would have a higher fraction of disturbed morphologies and younger stellar bulges from recent interactions than those of control quasars. After careful subtraction of the central quasar light, our candidate BSBH hosts show a statistically undifferentiated distribution of host asymmetry, indicative of a similar fraction of recent mergers. While a significantly larger sample is needed to place this result on a much firmer statistical ground, it opens questions as to the timescale differences between galaxy merger and BSBH formation, or the efficacy of the radial-velocity-shift-based selection of subparsec BSBH candidates. 
    more » « less
    Free, publicly-accessible full text available August 8, 2026
  2. Abstract High spatial and spectral resolution observations are essential for identifying subarcsecond dual and lensed quasars and confirming their redshifts. We present Gemini/Gemini Multi-Object Spectrograph and Hubble Space Telescope/STIS optical spectra for 27 dual quasar candidates selected based on their variability-induced astrometric noise or double detections in Gaia (the Varstrometry for Off-nucleus and Dual sub-Kpc AGN (VODKA) project). From this follow-up, we spectroscopically identify 11 star superpositions and seven dual/lensed quasars. Among the remaining targets, two are likely dual/lensed quasars based on additional radio imaging, while the rest are quasars with unknown companions. Without prior photometric or spectroscopic selection, we find the star contamination rate to be 41%–67%, while the dual/lensed quasar fraction is ≳26% in the follow-up VODKA sample. However, when combined with existing unresolved spectra and spatially resolved two-band color cuts, the dual/lensed quasar fraction can be increased to ≳67%. Our study highlights the need for high-quality spectral data, including a signal-to-noise ratio of at least 20, spatial resolution that is at least twice finer than the source separation, and a spectral resolution ofR ≳ 1000, in order to separate close sources, exclude stellar superpositions, and reliably identify dual quasars. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  3. Abstract Dual active galactic nuclei (AGNs), a phase in some galaxy mergers during which both central supermassive black holes (SMBHs) are active, are expected to be a key observable stage leading up to SMBH mergers. Constraining the population of dual AGNs in both the nearby and high-zUniverse has proven to be elusive until very recently. We present a multiwavelength follow-up campaign to confirm the nature of a sample of 20 candidate dual AGNs at cosmic noon (z ∼ 2) from the VODKA sample. Through a combination of Hubble Space Telescope and Very Large Array imaging, we refute the possibility of gravitational lensing in all but one target. We find evidence of dual AGNs in three systems, while seven exhibit a single AGN in galaxy pairs, through either strong radio emission or ancillary emission-line data. The remaining systems are confirmed as either quasar−star superpositions (seven) or nonlensed pairs (two) that require further investigations to establish AGN activity. Among the systems with radio detections, we find a variety of radio spectral slopes and UV/optical colors suggesting that our sample contains a range of AGN properties, from obscured radio-quiet objects to those with powerful synchrotron-emitting jets. This study presents one of the largest dedicated multiwavelength follow-up campaigns to date searching for dual AGNs at high redshift. We confirm several of the highest-zsystems at small physical separations, thus representing some of the most evolved dual-AGN systems at the epoch of peak quasar activity known to date. 
    more » « less
    Free, publicly-accessible full text available August 7, 2026
  4. Abstract The search for dual supermassive black holes (SMBHs) is of immense interest in modern astrophysics. Galaxy mergers may fuel and produce SMBH pairs. Actively accreting SMBH pairs are observed as dual quasars, which are vital probes of SMBH growth. Dual quasars at cosmic noon are not well characterized. Gaia observations have enabled a novel technique to identify dual quasars at kiloparsec scales based on the small jitters of the light centroid as the two quasars vary stochastically. We present the first detailed study of az= 2.17, 0 . 46, 3.8 kpc separation dual quasar, J0749+2255, using JWST/NIRSpec integral field unit spectroscopy. Identified by Gaia, J0749+2255 is one of the most distant small-separation dual quasars known. We detect the faint ionized gas of the host galaxy, traced by the narrow Hαemission. Line ratios indicate ionization from the two quasars and from intense star formation. Spectral analysis of the two quasars suggests that they have similar black hole properties, hinting at the possible synchronized accretion activity or lensed quasar images. Surprisingly, the ionized gas kinematics suggest a rotating disk rather than the disturbed system expected in a major gas-rich galaxy merger. Numerical simulations show that this is a plausible outcome of a major gas-rich galaxy merger several tens of Myr before coalescence. Whether J0749+2255 reflects an interesting phase of dual quasar evolution or is a lensed quasar remains unclear. Thus, this study underscores the challenges in definitively distinguishing between dual and lensed quasars, with observations supporting either scenario. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. Abstract We report Hubble Space Telescope (HST) Wide Field Camera 3 deep IR (F160W) imaging of SDSS J1608+2716. This system, located at a redshift of z = 2.575, was recently reported as a triple-quasar candidate with subarcsecond separations (∼0.″25) based on selection from Gaia astrometry and follow-up Keck adaptive optics–assisted integral field unit spectroscopy. Our new HST deep IR imaging reveals the presence of a fourth point-like component located ∼0.″9 away from the triple system. Additionally, we detect an edge-on disk galaxy located in between the four point sources. The entire system exhibits a characteristic cusp structure in the context of strong gravitational lensing, and the observed image configuration can be successfully reproduced using a lens model based on a singular isothermal ellipsoid mass profile. These findings indicate that this system is a quadruply lensed quasar. Our results highlight the challenges associated with identifying dual/multiple quasars on ∼kiloparsec scales at high redshifts and emphasize the crucial role of deep, high-resolution IR imaging in robustly confirming such systems. 
    more » « less
  6. Abstract Dual quasars—two active supermassive black holes at galactic scales—represent crucial objects for studying the impact of galaxy mergers and quasar activity on the star formation rate (SFR) within their host galaxies, particularly at cosmic noon when SFR peaks. We present JWST/MIRI mid-infrared integral field spectroscopy of J074922.96+225511.7, a dual quasar with a projected separation of 3.8 kpc at a redshiftz= 2.17. We detect spatially extended [Feii] 5.34μm and polycyclic aromatic hydrocarbon (PAH) 3.3μm emissions from the star formation activity in its host galaxy. We derive the SFR of 103.0±0.2Myr−1using PAH 3.3μm, which is 5 times higher than that derived from the knee of the infrared luminosity function for galaxies atz∼ 2. While the SFR of J0749+2255 agrees with that of star-forming galaxies of comparable stellar mass at the same redshifts, its molecular gas content falls short of expectations based on the molecular Kennicutt–Schmidt law. This discrepancy may result from molecular gas depletion due to the longer elevated stage of star formation, even after the molecular gas reservoir is depleted. We do not observe any quasar-driven outflow that impacts PAH and [Feii] in the host galaxy based on the spatially resolved maps. From the expected flux in PAH-based star formation, the [Feii] line likely originates from the star-forming regions in the host galaxy. Our study highlights the extreme stardust nature of J0749+2255, indicating a potential connection between the dual quasar phase and intense star formation activities. 
    more » « less
  7. Abstract Dual and off-nucleus active supermassive black holes are expected to be common in the hierarchical structure formation paradigm, but their identification at parsec scales remains a challenge due to strict angular resolution requirements. We conducted a systematic study using the Very Long Baseline Array (VLBA) to examine 23 radio-bright candidate dual and off-nucleus quasars. The targets are selected by a novel astrometric technique (varstrometry) from Gaia, aiming to identify dual or off-nucleus quasars at (sub)kiloparsec scales. Among these quasars, eight exhibit either multiple radio components or significant (>3σ) positional offsets between the VLBA and Gaia positions. The radio emission from the three candidates, which exhibit multiple radio components, is likely to originate from small-scale jets based on their morphology. Among the remaining five candidates with significant VLBA-Gaia offsets, three are identified as potential dual quasars at parsec scales, one is likely attributed to small-scale jets, and the origin of the last candidate remains unclear. We explore alternative explanations for the observed VLBA-Gaia offsets. We find no evidence for optical jets at kiloparsec scales, nor any contamination to Gaia astrometric noise from the host galaxy; misaligned coordinate systems are unlikely to account for our offsets. Our study highlights the promise of the varstrometry technique in discovering candidate dual or off-nucleus quasars and emphasizes the need for further confirmation and investigation to validate and understand these intriguing candidates. 
    more » « less
  8. Abstract Dual quasars at small physical separations are an important precursor phase of galaxy mergers, ultimately leading to the coalescence of the two supermassive black holes. Starting from a sample of dual and/or lensed quasar candidates discovered using astrometric jitter in Gaia data, we present a pilot case study of one of the most promising yet puzzling candidate dual quasars at cosmic noon (z∼ 1.8). Using multiwavelength imaging and spectroscopy from X-ray to radio, we test whether the SDSS J0823+2418 system is two individual quasars in a bound pair at separation ∼0.″64, or instead a single quasar being gravitationally lensed by a foreground galaxy. We find consistent flux ratios (∼1.25−1.45) between the two sources in optical, near-IR (NIR), UV, and radio, and thus similar spectral energy distributions, suggesting a strong-lensing scenario. However, differences in the radio spectral index, as well as changing X-ray fluxes, hint at either a dual quasar with otherwise nearly identical properties or perhaps lensing-based time lag of ∼3 days paired with intrinsic variability. We find with lens mass modeling that the relative NIR positions and magnitudes of the two quasars and a marginally detected central galaxy are consistent with strong lensing. Archival Sloan Digital Sky Survey spectra likewise suggest a foreground absorber via Mgiiabsorption lines. We conclude that SDSS J0823+2418 is likely a lensed quasar, and therefore that the VODKA sample contains a population of these lensed systems (perhaps as high as 50%) as well as dual quasars. 
    more » « less
  9. Abstract We present results of a multiwavelength analysis of SDSS J025214.67−002813.7, a system that has been previously classified as a binary active galactic nucleus (AGN) candidate based on periodic signals detected in the optical light curves. We use available radio−X-ray observations of the system to investigate the true accretion nature. Analyzing new observations from XMM-Newton and NuSTAR, we characterize the X-ray emission and search for evidence of circumbinary accretion. Although the 0.5–10 keV spectrum shows evidence of an additional soft emission component, possibly due to extended emission from hot nuclear gas, we find the spectral shape is consistent with that of a single AGN. Compiling a full multiwavelength spectral energy distribution (SED), we also search for signs of circumbinary accretion, such as a “notch” in the continuum due to the presence of minidisks. We find that the radio–optical emission agrees with the SED of a standard, radio-quiet, AGN; however, there is a large deficit in emission blueward of ∼1400 Å. Although this deficit in emission can plausibly be attributed to a binary AGN system, we find that the SED of SDSS J0252−0028 is better explained by emission from a reddened, single AGN. However, future studies of the expected hard X-ray emission associated with binary AGNs (especially in the unequal-mass regime) will allow for more rigorous analyses of the binary AGN hypothesis. 
    more » « less